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Various two-dimensional problems of the dynamic loading
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of a slab are solved for a material characterization that is

‘6 ’ elastic-viscoplastic and exhibits anisotropic work-hardening.
The governing constitutive equations are based on a unified
formulation which requires neither a yield criterion nor

/ loading or unloading conditions. They include multi-
dimensional anisotropic effects induced by the plastic de-
formation history. The theory also considers plastic compress-
ibility which depends on the extent of anisotropy. A numerical
procedure for solving the equations is developed which in-
corporates the history dependent anisotropic hardening effects.
Cases considered are the dynamic penetration of a slab by a
rigid cylindrical indenter, and a distributed force rapidly
applied over part of the slab surface. Both conditions of
fixed and free rear surfaces of the slab are examined. A
uniaxial problem is also considered in which different bases

for the anisotropic hardening law are examined.
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INTRODUCTION

A unified theory for elastic-viscoplastic isotropic .i
work-hardening materials which has the property that it requires
neither a yield criterion nor loading or unloading conditions l;
has been proposed by Bodner and Partom (l1]. In this formulation,
both elastic and inelastic deformations are present at all
stages of loading and unloading. This theory was implemented
in several two~dimensional dynamic indentation problems by

ifﬁ Aboudi [2] and extensive investigations were made concerning

1 the effect of the viscoplastic mechanism.

The isotropic theory ignores, however, the existence of
the Bauschinger effect which expresses the observation that

material hardening in a given direction of stressing causes a

[‘b reduction of hardening in the opposite direction. In a multi-
E axial situation, the material develops changes in resistance

to plastic flow (hardening) which vary in orientation as well ;
as with the sign of the stresses (or the inelastic deformation

rates). The resistance to plastic flow is therefore anisotropic

and depends upon the complete loading history.

In order to incorporate these effects, the theory was
generalized by Stouffer and Bodner {3] to include anisotropic
work-hardening. This is achieved by the development of suitable

evolutionary equations for the inelastic state variables which

repreéent the varying resistance of the material to plastic
flow in direction and in orientation. According to the equations

jl of [3), part of the rate of change of a state variable is
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isotropic and the remaining part depends upon the
relative sign and orientation of the current rate of
deformation vector. As a consequence of the induced
anisotropic hardening, plastic flow of an initially iso-

tropic material becomes anisotropic and compressible.

In the present paper, the theory of anisotropic
hardening is implemented on two-dimensional dynamic problems
to investigate the effect of non-isotropic work-hardening.

A numerical procedure is proposed which generalizes the

previous one described in (2] by including the dependence

of hardening on the complete history of deformation. The

- ——— -

method is applied to a .class of dynamic indentation problems
in which the contact region between the indenter (assumed
to be rigid) and the elastic-viscoplastic solid is not

known in advance but must be determined as part of the

s, i 0 g A

solution. The proposed procedure is also applied to a

thick slab which is excited by an extended time-dependent
normal loading on its surface, while the other surface is

either rigidly clamped or traction-free. The effects of the

induced anisotropic hardening and the consequent anisotropic

plastic flow are shown in each case, and comparisons
:i 4 are made with corresponding results obtained from the

: isotropic theory.

Finally, the method is illustrated in a uniaxial

problem of an elastic-viscoplastic rod which is impacted by
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a time-dependent loading. Here we also investigate the

effect of different reference bases for the non-isotropic

4 hardening law, i.e. the physical quantities that could

govern hardening. These could be either the current plastic

deformation rate (as in [3]), or the current direct stress.

Compressibility effects associated with each case are also

calculated, and the results are compared with each other and

with those of the isotropic theory.
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BASIC THEORY

The constitutive equations for elastic-viscoplastic
materials with isotropic work-hardening proposed by Bodner

and Partom []] have the basic property that no yield criterion

nor loading or unloading conditions are required. 1In the
framework of these equations, both elastic and inelastic
deformations are present at all stages of loading and unloading
although one type of deformation might be negligibly small in
some léading regimes. For infinitisimal strains (con-
sidered in the present case), the constitutive equations of the
material can be described by separating the total strain rate |
components into elastic (reversible) and plastic (non-reversible)

strdin rates as follows

£, m 8, é{?’ i,4 = 1,2,3 (1)

ij ij

where the strains are given by ¢,. = (u, .
1] i,)]

‘being the components of the displacement vector and the dots

+ uj'i)/z with u;

representing time derivatives. -s

The elastic strain rates é{§)are related to the stress

rates 6ij according to the usual Hooke's Law (assuming elastic

isotropy) , ‘ ‘
e = 65720 - A58, 4/ 12030021 ) o

where A\, u are the Lamé constants of the material and sij is

the Kronecker delta. %
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In the most general anisotropic plastic flow rule, the
plastic strain rates are related to the stresses according
to (31,
where Aijkz is a fourth order tensor valued function and

8.. denotes the deviators of the stress tensor, i.e.,

1)
sij = °ij - okkdij/3‘ The symmetry properties of é{?)_and
sij imply that
Miske = Byixe = Mijax (4)
Following Stouffer and Bodner (3], let us rewrite (3) in a
6~dimensional vector space in the following form (the summation
convention does not apply to this paper on Greek letters):
~ 6 ~ A
Dy =} Ay Tg a,B=1,...,6 (5)
g=1
wheig
- (p) .
R ' T, = 8y '
5w 3iP) o
D, = £33 ’ 3 = % '
(p) i
D3 i é33 ’ T3 i 533 '
; ~ (6)
(p) -
- N a (p) ~
D5 /7 é23 ’ Ts = V’I 523 v
- (p) =
and AaB is a 6 x 6 tensor.
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By a proper orthogonal transformation we can reduce

MR S e

(5) to the orm

6

D. = %

T (7)
®  gop @B 7B

where AaB is a 6 x 6 diagonal tensor.

The rate of plastic deformation B and the stress deviators

Td form, respectively, two vectors D and T each of six components

in the 6-dimensional space, whose bases are ea, in which the

—— i Dt .

tensor AaB is diagonal (see [3] for more details). Corresponding

to the Prandtl-Reuss equations for isotropic plastic flow, (7)

v AT D T e oo e e e R e s Al 1 e 3 ol £t Skt EOR o
A R e IR T i v 2 s St Gl s L s
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implies that the plastic deformation rate components D, are

parallel to the corresponding deviator Ta' On the other hand,
the anisotropic plastic flow rule (7) does not lead to

incompressible plastic deformation since, in general,

L B . — —
S Tt b 3

All f A22 # A33 so that Dl + D, + D3 # 0. For the case of

2
isotfopic plastic flow, however, A1 = A2 = A3 = A which implies

that D, + D2 + D3 = 0. In this special case, plastic deformation

is necessarily isochoric for every choice of A.

s A unified elastic-viscoplastic non-isotropic work-

hardening theory is achieved by assuming that each non-zero

component AGB (i.ef the diagonal terms Aaa) can be expressed

in terms of a single valued scalar function of the second

invariant of the deviatoric stress tensor J2(J2 = sijsij/Z), r

the temperature T and the state variables zaB' The terms

1 ; Zyg = 0 for a # B so that each non-zero component Z,p corresponds

ﬁ 4 directly to a non-zero component AaB' i.e.




Aaa = F(J2'T'zaa) (8)

The quantities zaB are referred to as the hardness variables
of the material which express its resistance to plastic flow.
They are used to describe the state of the material micro-

structure at any time t and thereby depend upon the complete

history of the deformation up to the current time.

Due to the Bauschinger effect, the response of the

material in tension and compression or shear to the left and

right are different as a result of which the material develops

anisotropic plastic flow. Accordingly, we define

+
[Zaa(t) D,(t) > 0 1
Zaa(t) e (9) |
2o () D (t) <0 i

e e i
T R A AR R N

where z;a(t) and Z;a(t) are the hardness variables for positive

and negative plastic deformation rates, respectively, (following [3]).

A specific form for the evolution laws for zaa(t) is

given in [3] in the form

az(t) + (l-q)z r, (t) D (t) > 0
(t) = (10)

o g "
qz(t) - (1-q)z r (t) D,(t) < 0 %

where z(t) is a single valued monotonically increasing function %
of the total plastic work Wp(t) such that an increase in z(t)
corresponds to an increase in the resistance of the material

to plastic flow. This implies that the hardness of the material .

|
|
| |
4
|
Al
B {




is taken to depend on the amount of plastic work which has been

{ done on the material from a reference state. In (10), g is
a material parameter describing the relative amount of
hardening that is isotropic, and ra(t) are taken, following [3],

to be the "direction cosines" of the rate of deformation vector:

‘ra(t) Da(t)/IP(t)I (11)
with

Ip|®> =p.

ie)

The evolution equations (10) for the state variables
which control the hardness of the material indicate that part
of the rate of change is isotropic and the remaining part
varies according to the sign and orientation of the current
rate of deformation vector. When g = 1, the completely iso-
E tropic work-hardening situation is obtained in which all the
Aaa are equal and plastic deformation is incompressible. The
case q < 0 is admissible, e.g. cyclic softéﬁing.

Integration of the evolution equations (10) yields

! (o) t .
: Z(t) =2 +e_ [ gz(t)dT +
ot s ~a
f o
: ‘ :
e, sign(D (t)] é(l-q)z(r)ra(T)dT (12)
6
where 2 (t) = | zaa(t)ea is a 6-dimensional vector described by
i a=1 rte)

the base vectors e, and Z represents the initial hardness in

each of the six coordinate directions. Equation (12) expresses




the dependence of the hardness of the material on the deformation
path. The second term in (12) represents the total isotropic
hardening up to time t, whereas the total anisotropic hardening
used to characterize the multi-axi&l Bauschinger effect is given
by the last term. As a consequence of (12), the components

of Z at the current time t have different values which gives

induced anisotropic plastic flow.

Representation of the anisotropic plastic flow can be
completely determined by specifying Aaa in (8) and z(t) in (10).
Motivated by equations relating dislocation velocities and
stresses, Bodner and Partom {1] proposed a relation which can
be generalized here for isothermal anisotropic hardening in

the form

9 2 n
Aaa a3 Doexp[ 2n (zaa/3J2) ]/J2

i (13)
where Do is the limiting value in shear of the strain rate of
the material for high stresses and n is a specific parameter.

The function z(t) in (10) is chosen to have the form

3(t) = m(zl-zo)exp[-mwp(t)/zo]Wp(t)

z(t) = zl-(zl-zo)exp[-me(t)/zo]

The rate of the plastic work is given by
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6
wp = azl T,Dy + trace (o;j) (Dy+D,+D;) /3 (16)
and it should be noticed that the trace is an invariant quantity.
In (14), Zyr Zp and m are appropriate parameters characterizing

the material.

It is seen from (15) that an increase in the plastic

g work wp corresponds to an increase in z which implies an

increase of the resistance of the material to plastic flow.

. A 2

Equation (7) and (13) would lead directly to isotropic plastic
; flow as in [1] by choosing zaa= z for all a. For the general

i case of anisotropic plastic flow,Zda(t) in (13) is obtained by

substituting 2 (t) of (15) into (12). The anisotropic plastic

- ——

o | representation (12), (13) and (15) requires the use of five

- material constants q, n, m, z_, z; which must be determined

R NN e

experimentally (Do is actually a scale factor).

Returning to equation (7), it is necessary to know the
orthogonal transformation which diagonalizes the material
tensor AOlB of (5). 1In the diagonal form AaB and zaB are given
with respect to the basis vectors e, If the material is

(o)
initially isotropic Zaa(o) = zaa= z

S

o P eT———

o for all a, and za8= AaB= 0

for o#B so that AaB is in diagonal form. Consequently, any
set of irdependent vectors e, can be chosen as the basis

vectors. As the deformation proceeds, the Z,, terms determined

from (12) become different from each other and give rise to

anisotropic plastic flow according to (13).




Formulation of the Problem

In this paper, we consider the dynamic response of a
slab =mcK, <o, 0§x2§H under plane strain conditions. The slab
is made of an elastic viscoplastic anisotropic work-hardening
material whose constitutive equations were described in the

previous section.

The slab is initially at rest at time t<0. The surface

X, = H is assumed to be kept either traction-free
019 = 0g9p = 0, =» < X) < ®, X, H, £t >0
or rigidly clamped

H, t > 0 (18)

Two different situations for the slab will be considered in this

paper.

(1) Dynamic indentation by a rigid punch:

In this case,the surface x, = 0 of the slab is pressed

at t = 0 by a rigid indenter. As the indenter penetrates the
slab, there is a region on the surface Xy = 0 which at first

has traction-free boundary conditions but later are displacement
conditions.The boundary of th: slab conforms to the geometry

of the rigid body at the contact region which, in general, is
initially unknown and must be determined from the solution.
Consequently, the appropriate boundary conditions for a friction-

less contact are
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021 =0 1>
j% ] s Htel: % =0, >0 119
u, = f(xl,t) 4
021 =0
>|X1‘ > X(t), x2 =0, t>0 (20)
Gyp = 0 J

where f(xl,t) is the prescribed X displacement imposed over
the time-dependent region of contact. The function X(t)
describes the boundary of the moving region, which is a priori

unknown, with X(0) = 0.

(2) Dynamic excitation by time-dependent normal tractions:

L

Here we assume that extended normal tractions are applied

on the surface Xy = 0 so that

021 =0
-0 < X, < ®,

1 Xy = o, t>0 (21)

022 g(xllt)

with g (xl,t) describing the form of the spatial and temporal

excitation.

The stress~strain relations in the plane strain conditions
for which €13 = €33 = €33 = 0 are obtained from (2) and (1) in

the form.

7 N P
°ij A[611+522]61j+2"€ij Aekk Gij Zueij (22)

The displacements “1(x1'x2't) and uz(xl,xz,t) are governed by
the dynamic equations of motion. These follow by substituting
(22) into the equilibrium equations:




T ———

e Sl 1% sl

in the absence of body forces, with p being the density of the

material. Substituting ?ééf.into (23) leads to the equations

of motion:

i 2k (p)
PUy = (A+2u)uy 49 + WUy o5 + (A4WIU, 55 = Aepp'y

‘2“(5{511 ca 5{212’

i - (p)
(A+2u)uy o5 + WUy 49 + (AW 45 = Aepy o

-2u(e{§{1 + eégtz) (24)

For isotropic hardening, plastic deformation is incompressible,
i.e., efP)= o0 and (22), (24) reduce to those given in [2]. In
the following section, we present a numerical procedure which

enables us to solve the above mentioned dynamic problems.
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Numerical Treatment

The numerical treatment of the two-dimensional dynamic
problem for the viscoplastic slab, which was formulated in
the previous section, is based on a finite difference
procedure. This is performed by introducing a net of mesh
sizes 8%y, sz in the Xy and X, directions respectively
together with a time increment At. The present numerical
treatment is a generalization of the procedure given in [2] for

isotropic plastic flow.

The procedure can be divided into three parts. 1In the
first part, the displacement components at interior points
within the slab are computed from the equations of motion (24).
In the second part, the inelastic variables are computed
throughout the slab. Finally, the third part consists
of the computation of the displacements at the boundaries

Xy = 0 and X, = H.

Part 1l: The displacement components ul(xl,xz,t), “2(x1'x2't) at
interior points within the slab are governed by the dynamic
equations (24). These are solved by replacing all the
derivatives by their corresponding central difference expressions
obtaining an explicit three-level system of difference

equations. Thus, it is possible to compute the displacements

Uyr Uy at time t + At provided their values at the previous

and current steps t - At and t, respectively, as well as the

values of plastic gtrains eig) at time t,are known throughout

the medium. The form of this difference system of equations is
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essentially similar to that given in [4] in a perfectly
elastic solid, and the additional inelastic terms add no
basic difficulty. This system is of a second order accuracy,
i.e., the error by which the exact solution of the dynamic
equations (24) dces not satisfy the corresponding diffe;:'énce

equations at a point is of second order in the increments.

Part 2: 1In order to compute the inelastic variables, we

denote the plastic strains by Ea(xl'XZ't) such that Ea = Da with
D, defined in (7). The plastic strain and the plastic work

are governed by (7) and (16) respectively with Aaa given in

(13). For the plane strain problem, these equations provide

a system of five equations in the unknown plastic strains and the
plastic work in terms of the variables at time t at any point

in the region. These equations can be integrated to yield

the E and wp at time t + At at a point of the slab provided

that Aaa(xl,xz,t) is known at that point.

In order to compute Aaa(xl'xz't) at a point at time t,
the hardness zia(xl,xz,t) must be determined [see egn.(13)].
This is achieved by employing (10) which leads approximately

to

+ +
zaa(xl’XZ’t) o zuu(xl,xz,t-At) + qu(xl,xz,t)

+ (l-q)Az(xl,xz.t)r(xl.xz,t-At) (25)

where Az is computed from
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Az (X, ,%,,t) = 2(x1,x2,t)At (26)
The term 2 in (26) is approximated according to (14-15) by

z(xlllet) = m[zl“z(xlrlet) ]V.Vp(xllxzct"At) (27)

and z;u(xl,xz,O) -8, assuming that the material is initially
isotropic.

Having computed zza(xl"‘Z't) from (25), (9) can be used
to determine zaa(xl'xz't)‘ This is then employed in (13) to
obtain Aaa(xl,xzt) so that (7) and (16) can serve to provide
the valuescf D (x,,X,,t) and ﬁp(xl,xz,t) respectively.

Equations (7) and (16) can be integrated to give the
plastic strains and plastic work at time t+At by using the

improved Euler—Cauchy method. According to this method

E, and wp at time t+At are tentatively predicted from

*
Ea(xl.xz,t+At) = Eu(xl,xz,t) + AtDa(xl.xz,t)
(28)

* LJ
wp(xl,xz,t+At) = wp(xl,xz,t) + Atwp(xl.xz,t)

a-ly coep 4

These values are corrected according to

*
+ At[Du(xl.xz,t) + Da(xl.xz't+At)]/2
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Wp‘xl'xz't+At) = Wp(xl.xz.t)

*
+[ﬁp(x1,x2,t) + Wp(xl,xz,t+At)]/2 (29)

eov

and the stars over Da and ﬁb indicate that these are evaluated
* *

using Ea(xl,xz,t+A:) and ?p(xl,xz,t+At). On the other hand,

the evaluation of D, and ﬁp

*

Aaa(xl'xz't+At) and these can be computed after obtaining

requires the determination of

z:a(xl,xz,t+At). This is performed in the same manner as in the
computation of Zia(xlpxz,t) according to (25), but using instead

the starred quantities, i.e.,
* +At) = 2% 4 qis t+AL
zaa(xlrxzrt t) = zaa(xl'XZ't) q Z(xlple )

% (l-q)A;(xl,xz,t+At)r(xl,x2,t) (30)

Consequently, it is possible to compute the plastic strains and
plastic work at any point within the region at the time t+At

when all the field variables are known at time t-At and t.

Part 3: The boundary displacements at x2=0 are determined
according to the relevant boundary conditions [(19-20) for the
indentation problem or (21) for the applied tractions). For the
dynamic indentation of the slab by a rigid body, the boundary
conditions (19-20) at X,=0 are imposed as in [2], taking into

‘account the fact that the region of contact between the slab and

the indenter is, in general, unknown in advance but must be
determined as part of the solution. This was achieved by an

iterative procedure which is continued until all the requirements
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of the indentation problem are satisfied simultaneously

(see [2] for more details).

When time-dependent normal tractions are applied on
the surface:§=0, the boundary conditions are given by (21).
These are imposed by approximating the derivatives in the
xldirection by central difference expressions and the
derivatives in the X, direction by forward difference
expressions. Consequently, a system of algebraic equations
in the unknown displacements at the boundary x2=0 is

obtained at every time step as follows:
ul(lel,xz,t) - ul(lel,x2+nAx2.t)

-n{e [uz ( (i+1) Axl lxz It) o u2 ( (i-l)Axllxz lt) ]

-28%,E, (X),%,,t)} = 0

'n{eélul((i+l)Axl,xz,t) - ul((i-l)Axl,xz,t)]
-Ax2[261E2(x1,x2,t) + G(El(xl,xz,t) + Ez(xl,xz,t)
+E3(xl,x2.t)) + g(xl,t)]} =0 (31)

where

€ = sz/(ZAxl) r 6 = 2/(A+20) , 87 = w/(A+2u) ,




Since the loading under consideration is symmetrical about

the Xy axis, the points x1<0 need not be considered,

i-eo' 13011'2'0000 .

The traction free conditions (17) at the surface x2=H

also gives the system of equations (31) but with x,=H, n=-1,

g(xl,t)=0. As in the perfectly elastic problem [5], it is
convenient and efficient, both from the rate of convergence
and programming viewpoints, to solve the above system of
equations by the Gauss-Seidel iterative procedure. Details of

the proof of the convergence of the process are given in [5].
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Applications

The proposed method has been applied to the problems of
the dynamic indentation of a viscoplastic slab by a long rigid
circular cylinder, and to that of a slab subjected to an
extended normal load rapidly applied on the slab surface.
Calculations were based on titanium as the slab material for
which the elastic and plastic constants are given in [1]:

0.44 x 10° N/mm?, p = 4.87 gm/cm’,
4 -1

z, = 1150 N/mm?, z, = 1400 N/mm?, p, = 10* sec™’, n =1 and

m = 100. The material parameter that prescribes the relative

A = 0.9366 x 10° N/mm?, u

amount of isotropic hardening, q, was found in (6] to be

g = 0.05 for titanium. This was obtained under uniaxial
cyclic stressing conditions using the current direct stress
as the reference for the relative hardening effects. The
value q = 0.05 was used in these calculations although it is
not exactly representative since the hardening "cosine law"
in the present formulation is based on the current plastic
deformation rate (11). Further studies on this subject were
made in relation to the uniaxial stress problem discussed

later in the paper.

The slab thickness was taken to be H coDO'l/S which
means that a compressional elastic wave whose speed in the
material is Sy =[(JH-2u)/p]1/2 will propagate the distance S5H

during the time interval Do-1

« Results presented in this
paper were obtained, as in [2],with the spatial increments

Axl/H = sz/ﬂ = 0.1 and the tiqe step coAt/H = 0.05.

(1) The dynamic indentation by a rigid long circular cylinder:

G i il T 903
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For a long rigid cylinder indenting the slab, the

function f(xl,t) in (19) has the form

£(x),t) = p(t) - R+ (R"’-xlz)l/2 (32)

-e -

In this equation, p(t) is the penetration distance of the indenter
along the xz-axis, i.e., p(t) = u2(0,0;t),and R is the radius

of the cylinder. This is assumed to be much larger than the
contact area so that the boundary conditions (19-20) are
applicakle. When the cylinder is pressed into the slab at a

constant speed V, p(t) = Vt.

In Fig. 1, plots of the normal and tangential stresses
Oggr 0177 the vertical displacement uz,and the plastic work wp
are given versus the distance X along the surface x2=0 of the
slab when cot/H=2.5 and, 5 with VA:o = 0.05 and R/H=5. The other
surface of the slab is kept rigidly clamped so that (18) holds.

In the same Figure, the plastic work along the plane of

symmetry x1=0 within the slab is also shown. The stresses are

normalized with respect to O = A+2u. *

These results are compared with those corresponding to
completely isotropic plastic deformations, i.e. g=1l. This com-
parison indicates that the effect of the anisotropic hardening
on the stress field and the shape of the deformed surface of

the slab is not significant in this case.

The plots of the plastic work Wp give an indication of
the amount of plastic deformation at various points of the slab

at a given time. The anisotropic hardening case is seen to lead

to lower values of Wp compared with the isotropic one. This
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does not seem to appreciably influence the surface stress field
nor the contact area or the force required to press the cylinder

into the slab in this example;

It is interesting to compare the amount of plastic
2
volume change E(x,,x,,t) = | E_(x,,X,,t) which is obtained in
1552 asy @ i R
the case of anisotropic plastic flow. (When the flow is

isotropic the plastic deformation becomes isochoric at all

times so that E(xl,xz,t) = 0). Table I presents E(0,0,t) at
several times after the initiation of the identation process.
The Table clearly shows a monotonic increase with indentation
of the volume change due to plastic d%formation at the given

point.

The present indentation problem was also examined for
the case when the surface x2=H of the slab is kept traction-free
so that (17) is applicable. Here too, the results for the
stress field show similar correspondence between the aniso-
tropic and isotropic hardening. Extensive studies of the
response to dynamic indentation of a slab made of an elastic-
viscoplastic isotropic work-hardening material can be found

in [2].
(2) Applied time-dependent loading:

The viscoplastic slab is subjected to an extended normal

time-dependent traction (21) at x2=0 of the form




l %ﬂ réosin[wt/Ztm)] t<t
| &
4
g g(x;,t) = S rl%q [ <He (33)

and g (xl,t) = 0 for |x1|>H. In Fig. 2, the resulting stresses
and plastic work are shown at x2=H/2 versus x, when cot/H = 2.5
and 5 with go/oo = 0.1 and cotm/H'= 2.5 in (33). In this Figure

we present also the plastic work along the plane of symmetry

Eaaidisidn s e skica st
——— B e

x1=0 within the slab at the same times. These results are
compared with those corresponding to the isotropic hardening
case (g=1l). In both cases, the other surface of the slab

x2=H is assumed to be rigidly clamped (18). The comparison

e —— ————— .

shows that when cot/H = 2.5, the resulting stress fields are
{i still similar. When cot/H = 5, however, considerable differences
occur in the stress fields between the two cases which exhibits

the effect of anisotropic hardening.

In Fig. 3, we present the results for the same two cases
as Fig. 2 but the surface x2=H of the slab is kept traction-free
(17). Here the effect of the anisotropic hardening is less

pronounced. The different results obtained in Figs. 2 and

A RS PR )

3 are attributed to the ciampad and free boundary conditions

which affect the reflected stress waves differently.

Finally, Table II gives the amount of plastic volume

S ST

change at the point xlsxzso at several times, when the surface

xz-H of the slab is either rigidly clamped or traction-free. 1

o
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(3) Uniaxial deformation due to dynamic loading:

In order to obtain better understanding of the effect

of anisotropic hardening, the simplest one-dimensional problem

of uniaxial dynamic loading of a thin rod of length H in

; the Xy direction was considered. The rod was assumed to

be made of elastic-viscoplastic anisotropic work -

hardening material (titanium). In this case the only non-zerc
stress component is the axial stress Oy9 SO that (2) reduces

L to

B e e 4

é§§’= 550/E (34)

where E = p(3X+2u)/(X+u) is the Young's modulus of the material.

The constitutive equation (22) then reduces to %

———— aama o ma a— ————————

& % (p)
022 = Egyy = Bejyy

with €yg = 8u2/ax2, so that (24) take the form

e L)
pii, = E(uy 55 = €33,2) (35)

It is assumed that x2=0 is loaded in the form

g, sin(2mt/tp) t <ty
il 93 " s
i . e

with g, being an amplitude factor, and the other end is kept

stress-free, i.e.




- 9% .
Oy =0 x, = H (37)

This one-dimensional dynamic problem forms a special case of

the two-dimensional formulation and the method of solution.

By solving the problem for gl/oO = 0.05 and cotm/H = 0.5

in (36), we find that the axial stresses when g = 0.05 are the

z sl S o et
I R SR Sl T AR S A o

same as those for g=1, i.e., the effect of anisotropic hardening
is negligible for all times. It turns out that the resulting
stresses saturate in this case so that the effect of anisotropic
?S hardening would therefore be relatively small, e.g. [7], in
accordance with our observation. On the other hand, choosing
gl/oo = 0.005 and cotm/H = 0.5 in (36), for which the

amplitude of the applied stress is in the vicinity of the yield
stress, the effect of anisotropic hardening becomes fairly

pronounced, Fig.4.

All the results presented in this paper were based on the

assumption of [3] that the anisotropic change in resistance to
plastic flow is in the direction of the deformation rate, so
that the "cosine law" (1l1) for the rate of plastic deformation
is applicable. Another possibility is to use a "cosine law"
for the current stress which means that ra(t) in (11) would be ?

replaced by

& 1/2
£, (t) 0447133, (38)

,j'% with obvious relations between o and i, j (see eq.(6)). Note

172

' 1] that (332) is the "effective stress". 1In a uniaxial problem,
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(38) gives r, = 1l for Oggy 2 0 and r, = -1 for Opp < 0. As
previously mentioned, the relative amount of isotropic hardening,

q in (10), was determined for titanium in (6] using this rule.

It would be interesting, therefore, to compare the effects
of anisotropic hardening using either (38) or (11). This
comparison also appears in Fig. 4 which exhibits the axial stress
and plastic work versus time at the observation point H/2 at the
middle of the rod when it is loaded according to (36) with
g,/0, = 0.005 and cotm/H = 0.5. It is seen that these two
cosine laws do not lead to appreciable differences in this case.
A consequence of this observation is that the value of g chosen
to match a given uniaxial stress response»should not be sensitive
to the choice of either anisotrdéic hardening law. Fig. 4 shows,
however, that the response is considerably different when hardening

is assumed to be isotropic (q=1).

Finally, Table III presents the amount of plastic volume
change at the mid-point of the rod at several times when the
"cosine laws" (11) and (38) are used. The Table shows that the
amount of volume change when employing the stress "cosine law" (38)
is about three times larger than that obtained using (11l) with
the same value of q. The plastic volume change is therefore a
more sensitive indicator of the difference in hardening laws than
the stress response for the uniaxial stress case. Which of the
two references for anisotropic hardening, i.e. stress or plastic
strain rate, is closer to the physical situation is not obvious

and will be the subject of further investigations. It is noted

that the stress rule (38) leads to simpler numerical work.




Conclusions

Constitutive equations for elastic-viscoplastic

anisotropic work-hardening materials proposed by Stouffer and
Bodner [3] have been implemented to study the effect of aniso-
tropic hardening and the resulting induced anisotropic plastic
flow in several two-dimensional dynamic problems. A basic
assumption in the formulation (3] is that anisotropic hardening
is controlled by the sign and orientation of the rate of
plastic deformation. An alternative formulation could be
adopted by taking a "cosine law" based on the current direct
stress. These two law are investigated in a uniaxial dynamic
problem. Further studies on the applicability and implications

of these hardening laws are under investigation.
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TABLE I ]

2;2\7“ E(0,0,t) x 102 |
‘ :1

0.5 0.07 | 3

1.0 0-11 4

1.8 0.13

2.0 0.15

2.5 0.33

3.0 0.54

3.5 0.78

4.0 1.05

4.5 1.3

5.0 1857

Variation with time of the amount of
volume change due to the plastic de-
deformation at the point x1=x2=0
directly under the indenter.
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TABLE II

tiie E(0,0,t) x 10

R g ey
0.5 0 0
1.0 -0.21 -0.21
1.5 =-0.57 -0.56
2.0 -0.91 -0.58
2.5 -1.14 -0.44
3.0 -1.27 -0.66
3.5 -1.33 -0.80
4.0 -1.40 -0.89
4.5 -1.48 -1.01
5.0 -1.59 -1.19

Variation with time of the amount of volume change
due to plastic deformation at the point x1=x2=0
for a slab loaded at X5=0 when the other surface is
rigidly clamped (18) and traction-free (17).
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TABLE ITI
time amount of volume change
cot/H due to plastic deformation
"strain rate" "stress"
cosine law (1ll) cosine law (38)
0.5 0 0
1.0 -0.13 x 1073 -0.34 x 107>
1.5 -0.26 x 1073 -0.69 x 1073
2.0 -0.40 x 1073 -0.11 x 10~2
2.5 -0.81 x 10~ -0.22 x 1072
3.0 -0.54 x 10~3 -0.18 x 1072
3.5 -0.53 x 1073 -0.18 x 1072
4.0 -0.44 x 1073 -0.16 x 1072
4.5 -0.35 x 10~ -0.14 x 102
5.0 -0.35 x 1073 -0.14 x 1072

Variation with time of the amount of volume change
due to plastic deformation at the mid-point of the
rod based on the "strain rate" cosine law (l1) and
the "stress" cosine law (38) for anisotropic hardening.
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FIGURE CAPTIONS

Uniform frictionless indentation of an elastic-
viscoplastic anisotropic work-hardening slab

( ) and isotropic work-hardening slab

(----), by a long rigid circular cylinder with a
speed V/c, = 0.05. The plots show the normal
and tangential stresses, vertical displacements 1

and plastic work versus the distance along the
surface x2=0, and also the plastic work along

the plane of symmetry xl=0 within the slab, at
times S t/H = 2.5 (top) and Co t/H = 5 (bottom).

Time-dependent normal loading of an elastic-
viscoplastic anisotropic work-hardening slab
(—) and isotropic work-hardening slab (---)
whose rear surfaces are rigidly clamped. The
plots show the stresses and plastic work versus
the distance along Xy = H/2, and also the plastic
work along the plane of symmetry xl=0 within the
slab, at times o t/H = 2.5 (top) and o t/H =5
(bottom) . The loading function is given by (33).

Same as Figure 2 but for a slab whose rear
surface is traction-free.

Axial stress and plastic work versus time at the
mid-point of a rod made of elastic-viscoplastic
anisotropic work-hardening material whose aniso-
tropic hardening is governed by the "cosine laws"

on ¢P (11) (.....), and on o (38) (----), and for an
isotropic work-hardening material (——). The
loading function is given by (36).
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